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Abstract

A recurring challenge in agronomic research is how to interpret large data sets that combine information on genotypes,
phenotypes and environments. High-resolution color graphics offer the possibility of presenting such data as pseudo-maps or
arrays, wherex- andy-coordinates represent genotypes and environments, and thez-values represent phenotypic data using dots
or other symbols and an appropriate color scheme to indicate the range of values. This paper describes use of such “GenPhEn
arrays” with data from three studies: a survey of leaf thickness in common bean (Phaseolus vulgaris L.) lines, a multi-location
trial of wheat (Triticum aestivum L.) lines and a simulation analysis for response of common bean to increased air temperature.
By standardizing the phenotypic values, the genotypic and environmental effects can be easily viewed and better comprehended,
especially when presented in multi-trait arrays. The arrays allow presenting large amounts of data (i.e., 5000 data points or more)
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haracterize genotypes or environments can further assist interpretation and hypothesis generation. It is expected th
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. Introduction

Research that is concerned with how crop pheno-
ypes respond to genotypic and environmental manip-
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ulation typically requires examining effects of multip
crop traits and environmental factors and their inte
tions. Data sets combining information on genoty
phenotypes and environments are often large and
plex, and the quantity and complexity of data can
expected to increase with advances in field instrum
tation, molecular biology and other scientific tools. S
tistical approaches such as multiple regressions
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White et al., 1992), principal component analysis (Yan
et al., 2001), stability analysis (Lin et al., 1986) and
cluster analysis (Collaku et al., 2002) are used widely to
generate numerical parameters from analyses of large
sets of agronomic data, but tools for visualizing data ap-
pear to be underutilized. Advances in color computer
displays, color printing and software to create and ma-
nipulate images offer researchers numerous options for
viewing data (Tufte, 1983; Fayyad et al., 2002; Keim,
2002). Data visualization with large data sets can facil-
itate identification of unexpected relations, potentially
faulty data or other patterns. Visualization also pro-
vides a means for presenting complex results to non-
specialists in a manner that can facilitate comprehen-
sion.

Maps and data tables are familiar forms of data
representation in agricultural and environmental sci-
ence. Where applicable, maps are usually more effec-
tive for presenting data than tabular formats (Smelcer
and Carmel, 1997). Geographic maps require a coor-
dinate system related to geographic location, but for
data with no inherent geographic structure, “pseudo-
maps” may be produced by using an artificial coordi-
nate system. Data arrays are multi-dimensioned sets of
data. Three-dimensional arrays have an obvious anal-
ogy with maps, where eachx, y, z triplet in an array
corresponds to thex- andy-coordinates of a point with
an associated valuez. In field research, many data sets
have an array structure, where the genotype and envi-
ronment are thex- andy-elements and the phenotypic
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2. Materials and methods

The basic approach for generating a GenPhEn array
is to code a set of genotypic, phenotypic and environ-
mental data as anx, y, z-array, wherex might indicate
the genotype,y the environment andz the phenotype.
The coordinate value used to represent genotypes can
be based on cultivar type, yield rank or other criteria.
Environments are located on another axis using site
mean yield, elevation, latitude or similar criteria. The
phenotypic value,z, is plotted as a function ofx andy.
For a single trait, the phenotypic value may be used,
but to view multiple traits in a single figure, values are
standardized over a suitable range, typically from 0 to
1. The value for each point is indicated in the figure by
shading the plotted symbol using a color scheme keyed
to the range of values (e.g., red to green to blue for a
0–1 interval as used inFig. 1).

2.1. Data sources

Applications of GenPhEn arrays are illustrated with
data from a physiological study on lines of common
bean (Phaseolus vulgaris L.) that characterized vari-
ation in leaf thickness (White and Montes-R, 2005),
a multi-location wheat trial conducted by the Interna-
tional Center for Maize and Wheat Improvement (CIM-
MYT; Fox et al., 1997) and simulations of global warm-
ing scenarios for common bean.
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roarrays,” where binding agents (e.g., antibodie
ligonucleotides) are arranged in a rectangular a
n a solid support (Schena et al., 1998; Ekins and C
999).

This paper illustrates how data arrays prese
s pseudo-maps can enhance presentation and
is of genotypic, phenotypic and environmental d
n a single figure. These arrays are termed “G
hEn arrays” to indicate the three components

ng presented, i.e., genotype, phenotype and env
ent. In data visualization literature, terms for s

lar presentations of arrays include “table visual
ion” (Hoffman and Grinstein, 2002), “pixel-oriented
echniques” (Keim and Kriegel, 1996), “dense pixe
isplays” (Keim, 2002) and “matrix visualization
Sharan et al., 2003).
-

.1.1. Leaf thickness in common bean
The leaf thickness data are from a study conduct

wo field stations of the International Center for Tr
cal Agriculture (CIAT) in Colombia using 25 be
ines that represented the two major gene pools
ean and Mesoamerican) and also varied for gro
abit and grain size (White and Montes-R, 2005). At
almira (3◦30′N latitude, elevation 965 m), trials we
onducted in 1992 and 1993, and at Popayan in 1
ll trials were arranged in triple lattice designs a
ere managed for near optimal growth. Four traits

ated to leaf thickness were measured at 20, 32 an
ays after planting. They were leaf thickness (TH
measured with a hand-held micrometer), leaf op
ensity (LOD) at 670 nm (measured with a hand-h
chlorophyllometer”; Design Electronics, Palmers
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Fig. 1. GenPhEn array showing variation in five traits related to leaf thickness for 25 lines of common bean grown in three trials and sampled
at 20, 32 and 48 days after planting. Values are presented in response classes based on standardized (0–1) values. Each line by sample by trial
phenotypic value is the line mean. Values for each trait are displayed in the rectangularly blocked areas as labelled; where THK is thickness
per second, LOD is leaf optical density, LSM is leaf specific mass, PRa is leaf protein content on an area basis and PRd is leaf protein content
on a dry mass basis. Samples 1, 2 and 3 were taken 20, 32 and 48 days after planting, respectively. The symbols appended below thex-axis
indicate significance levels of effects on genepool on each parameterx samplex trial combination. The three columns of points appended to
they-axis represent genepool, growth habit and dominant or recessive allelic nature for theFin locus for each line. Growth habit was classified
based on a 1–4 scale (Schoonhoven and Pastor-Corrales, 1987), where 1: determinate bush, 2: indeterminate bush, 3: sprawling indeterminate
and 4: indeterminate climber (pole).

North, New Zealand1), leaf specific mass (LSM) (leaf
dry mass per unit leaf area) and leaf protein content
expressed on an area basis (PRa). Protein content on
a dry weight basis (PRd) was also estimated. Details
of crop management, measurements and data analyses
are given inWhite and Montes-R (2005).

Data for means of individual lines for each trial
and sample data was standardized to a range of 0–1,
where 0 corresponded to the minimum value for each
trait within a trial and sample date and 1 to the max-
imum value. The standardized phenotypic data were

1 Mention of a commercial or proprietary product does not consti-
tute a recommendation by the USDA or the University of Georgia.

then grouped in anx, y, z array. The 25 genotypes were
arranged by genepool and seed size within genepool on
they-axis. Data along thex-axis were grouped by trial,
trait and sample date. The phenotypic value for eachx,
y-coordinate was colorized using a 10-color scale from
red (minimum, 0) to blue (maximum, 1). The names
of the 25 lines and classifications of lines by genepool,
growth habit and theFin genetic locus, which controls
determinate and determinate stem type, were also dis-
played as columns of symbols along they-axis.

2.1.2. Elite spring wheat yield trial
The 11th Elite Spring Wheat Yield Trial (ESWYT)

included 30 lines (Table 1) and was grown at over 70
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Table 1
Identification of lines tested in the 11th Elite Spring Wheat Yield Trial (ESWYT). Yield rank corresponds to position along thex-axis inFig. 2

Name or cross Mean yield
(kg ha−1)

Yield rank Days to
heading (days)

Test weight
(g l−1)

Kernel weight
(mg kernel−1)

K134(60)/4/TOB/BMAN//BB/3/CAL 3710 1 80 762 40.0
Henne 3760 2 86 739 32.2
TR771773/SLM 3780 3 77 733 43.2
MAYA/NAC 3780 4 83 729 33.7
Rabe 3820 5 83 761 37.8
Caracara 3850 6 88 774 30.7
CNO79/PRL 3860 7 84 745 37.0
Fasan 3900 8 85 789 33.3
CNO79/PRL 3920 9 82 746 39.0
ARA 3960 10 80 756 36.1
Star 3960 11 90 749 39.7
Rayon F 89 3980 12 87 755 31.4
MRL/BUC 3400 13 83 746 37.3
Siren 4030 14 84 781 32.7
Fasan 4030 15 84 792 32.4
KA/NAC 4080 16 84 773 41.2
JUP/BJY 4090 17 83 781 32.1
Kauz 4130 18 87 774 31.8
Tepoca T 89 4140 19 84 764 37.0
Sibia 4150 20 88 750 41.1
Bacanora T 88 4150 21 86 771 32.5
Turaco 4170 22 83 758 40.5
PRL/VEE#6 4210 23 85 777 35.1
BJY/JUP 4220 24 87 766 32.6
Munia 4270 25 87 794 34.5
Sasia 4280 26 86 735 35.4
Angostura F 88 4300 27 87 771 39.6
Tui 4350 28 85 772 37.7
Veery 4370 29 86 737 35.4
Local check 4420 30 84 780 38.8

Minimum value from all trials 320 41 516 6.6
Maximum value from all trials 10870 182 867 59.0

sites (Table 2). Data were obtained from the Inter-
national Wheat Information System, Version 2 (Fox
et al., 1997). Trethowan et al. (2002)described gen-
eral aspects of the objectives, experimental design and
management of the ESWYT. The core data used for the
GenPhEn illustration were genotypic means over repli-
cates from individual environments (i.e., sites). Arrays
were created for the traits of grain yield, days to head-
ing, test weight (grain weight per unit volume) and
kernel weight, using the 55 sites for which data for at
least two traits of interest were available.

In order to combine arrays for the four traits, data
were standardized to a range of 0–1, where 0 corre-
sponded to the minimum value for each trait and 1 to

the maximum value. Minimum and maximum values
were calculated both across all sites and lines and for
each site in order to present two different views of vari-
ability. The standardized phenotypic data for each trait
were then grouped in anx, y, z array. The 30 genotypes
were arranged from lowest to highest yield on thex-
axis, the 55 sites from lowest to highest yield along the
y-axis and the phenotypic value for eachx, y coordinate
colorized using a 10-color scale from red (minimum,
0) to blue (maximum, 1).

To illustrate how gene classification data can be ap-
pended to thex- andy-axes of a given array, the 30 lines
were examined in terms of the alleles they possessed
at each of four genetic loci, using data obtained from
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Table 2
Locations represented in the 11th Elite Spring Wheat Yield Trial (ESWYT). Yield rank (from lowest to highest) corresponds to position along
they-axis inFig. 2

Location Country Latitude (◦) Elevation (m) Mean grain
yield (kg ha−1)

Yield rank

Uyole Agriculture Center Tanzania −8.37 1801 1200 1
Taichung District Agriculture Improvement Station Taiwan 26.53 15 1370 2
PBS Alentejo Portugal 38.15 208 1470 3
Vollebekk Norway 59.78 90 1680 4
Obonuco Colombia 1.27 2710 1800 5
OCEPAR-Palotina Brazil −24.83 341 1880 6
Bordenave Argentina −37.02 212 2120 7
CNPT-EMBRAPA Brazil −28.42 684 2270 8
San Benito Bolivia −17.10 2730 2290 9
Heihe Agricultural Research Institute China 50.45 168 2390 10
Jiangsu Academy of Agriculture Science China 32.78 67 2500 11
FUNDACEP Brazil −28.60 473 2500 12
OR Melhoramento de Sementes Ltda. Brazil −28.43 700 2550 13
Labor Ovalle Guatemala 14.50 2407 2610 14
Bembeke Malawi −14.43 1560 2650 15
Southeastern Anatolian Agricultural Research
Institute

Turkey 37.20 660 2680 16

ICGR, Beijing China 39.47 50 2866 17
Joydepur Bangladesh 23.38 8 2879 18
Jiu San Agriculture Institute China 48.28 288 2888 19
Small Grain Institute South Africa −28.20 1687 2985 20
NPBRC-Njoro Kenya 0.00 2165 3000 21
Marcos Juarez Argentina −32.12 110 3050 22
CRIA Paraguay −27.82 200 3070 23
Centro Experimental Chimaltenango Guatemala 14.83 1790 3160 24
Tomejil Spain 37.58 72 3210 25
Tibiatata Colombia 4.20 2550 3360 26
Sokolac Centre Yugoslavia 43.80 860 3380 27
Arusha Farm, T.A.R.O. Tanzania −3.85 1372 3400 28
Pirsabak Pakistan 33.98 340 3480 29
Hissar India 29.77 215 3520 30
Institute of Hongxinglong China 46.55 75 3680 31
Andenes-Cusco Anexo Taray Peru −13.87 2900 3740 32
Crop Science Institute Sichuan Academy of
Agriculture Science

China 30.02 506 4080 33

Durgapura India 26.80 450 4110 34
NIAB Faisalabad Pakistan 31.08 117 4200 35
PAU-Ludhiana India 30.87 247 4210 36
The Keshan Institute of Heilong Jiang Academy China 48.88 223 4410 37
Ahwaz Iran 31.67 21 4530 38
L’Urgell (Palau D’Anglesola) Spain 41.92 250 4540 39
Kentziko Thermi Greece 40.95 10 4640 40
Azad University of Agriculture Techology Kanpur India 26.40 123 4780 41
Araghi Mahaleh Iran 36.33 5 5110 42
Rncho del la Merced (Jerez) Spain 36.15 20 5290 43
EMBRAPA-CPAC Brazil −15.70 1001 5310 44
Rattray Arnold Research Station Zimbabwe −17.23 1300 5450 45
Fars Iran 28.55 1101 5810 46
Jesus Ma. Jalisco Mexico 20.18 2110 5820 47
Graneros Chile −34.70 479 5960 48
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Table 2 (Continued)

Location Country Latitude (◦) Elevation (m) Mean grain
yield (kg ha−1)

Yield rank

Mimosa Madagascar −20.00 1501 6790 49
Spii Cereal Research Station Iran 35.97 1321 7670 50
Quilamapu Chile −36.92 217 8480 51
Wang Tai Pu China 38.25 1118 8570 52
Dirab Saudi Arabia 24.62 600 9000 53
La Platina Chile −33.63 629 9270 54
Kufra Production Project Libya 25.00 415 9360 55

the on-line database Wheat Pedigree and Identified Al-
leles of Genes (Martynov et al., 2002). The four loci
were the leaf rust resistance genesLr13 andLr26 and
the height reducing genesRht1 andRht2. Lines known
to be homozygous for the dominant or recessive al-
lele were coded 1 (blue) or 0 (red), respectively, for the
given locus. If there was no information for allele status
of a line, thex- andy-position was left blank. The gene
classification data for each line were thus appended as
a 24 factorial array.

The sites used in the 11th ESWYT were also char-
acterized by computing standardized values for site el-
evation (in this case from 5 to 2900 m) and site latitude
(absolute values from 0◦ to 60◦ latitude), again scaled
and coded using the 0–1 scale. The values were ap-
pended as two columns of points along they-axis.

2.1.3. Simulations of effects of temperature regime
on common bean

The simulation study examined the potential im-
pact of global warming on rainfed bean produc-
tion in Michigan as simulated by the CSM-GeneGro
model (Hoogenboom et al., 2004). CSM-GeneGro is
a process-based model that simulates photosynthesis,
respiration, partitioning and dynamics of water and nu-
trients. It combines features from the previously devel-
oped GeneGro model (White and Hoogenboom, 1996;
Hoogenboom et al., 1997; Hoogenboom and White,
2003) with the Cropping System Model (CSM) (Jones
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gous genotypic combinations (27), only 96 different
phenotypic combinations are possible since in appd
homozygote, theHr andhr homozygotes have undistin-
guishable phenotypes (Kornegay et al., 1993). Details
of the procedure used to develop the estimator equa-
tions based on field observations of breeding lines and
cultivars are given inWhite and Hoogenboom (1996).
Daily weather data from 1930 to 2002 were obtained for
the Kellogg Biological Station (42.40◦ North, 85.38◦
West; elevation 277 m). The soil was a Kalamazoo
Loam (Typic Hapludalf), allowing root growth to a
depth of 0.9 m. Crops were planted on 18 June at a
population of 25 plants m−2 and a 0.6 m row width.
The crop was rainfed and 50 kg ha−1 of nitrogen was
applied at planting.

Possible effects of global warming were simulated
by increasing all daily maximum and minimum tem-
peratures in 1◦C increments up to a 4◦C increase
above the historic values. No modifications were made
to radiation or precipitation regimes or to manage-
ment.

For each of the 96-genotypes, means for various
crop traits and environmental factors were calculated
over the 73-year-period. Duration of grain fill was es-
timated as the difference between anthesis and matu-

Table 3
Effects of genes in common bean that are considered in the CSM-
GeneGro crop simulation model

Gene Effect of dominant allele

P nse)
H t
F

F
S
S
S

t al., 2003). For the GenPhEn array, a hypothet
ongenic set of cultivars was created that represe
ll possible homozygous combinations of the all
vailable at each of seven genetic loci (Table 3). Geno-
ypes for each locus were coded with a value of 0
ecessive and 1 for dominant, and then linear e
ions were used to estimate the actual coefficients
n the simulations. Of 128 possible different homo
pd Long days delay flowering (classic short-day respo
r Increases effect ofPpd, but requiresPpd to be presen
in Indeterminate stem type, which is associated with

later flowering
d Early flowering and maturity
sz1 Increases seed size
sz2 Increases seed size
sz3 Increases seed size
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Table 4
Mean minimum and maximum values obtained for the simulation of 96-genotype combinations of rainfed common bean crops over 73 years
and five temperature regimes at the Kellogg Biological Station, Michigan

Variable Units Minimum value Maximum values

Grain yield kg ha−1 680 1850
Canopy dry weight kg ha−1 1500 4230
Days to anthesis days 29 49
Duration of grain filling days 30 42
Grain weight mg 100 360
Harvest index kg ha−1 32 55
Total season precipitation mm 560 660
Total season evapotranspiration mm 440 530
Water use efficiency kg ha−1 mm−1 1.4 3.6
Season nitrogen uptake kg ha−1 43 66
Nitrogen use efficiency kg ha−1 12.4 30.4

rity dates. Water use efficiency (WUE) and nitrogen
use efficiency (NUE) were calculated as the ratio of
crop grain yield to total evapotranspiration and crop ni-
trogen uptake, respectively. For plotting, the crop trait
values and environmental factor values were standard-
ized on a 0–1 scale as applied to the respective geno-
types and temperature regimes. In contrast to the wheat
data set, these data were standardized on a 0–1 scale
as applied to the respective minimum and maximum
observed over all temperature regimes (Table 4). To
illustrate an alternative means of positioning the 96-
genotypes along thex-axis, phenotypic values for days
to anthesis, duration of grain-filling, canopy weight at
maturity, grain yield, kernel weight and harvest index
from simulations under the historic temperature regime
were clustered using Ward’s minimum variance proce-
dure (SAS Institute, 1996). The resulting six clusters
were then used to order the display of genotypes along
the x-axis of the array, with the within cluster order
being based on the relative order used in the previous
array.

2.2. Data processing and plotting

Initial data processing to calculate standardized val-
ues, obtain means and ranks, and generatex- and y-
coordinates was done with the SAS System for Win-
dows, Release 8.00 (SAS Institute Inc., Cary, IN). Draft
GenPhEn arrays were produced with the GPLOT pro-
cedure of SAS, and final published forms with more de-
t 8.2
( ed-
l

3. Results and discussion

3.1. Leaf thickness in common bean

Bean cultivars differ in leaf thickness and this vari-
ation is associated with the genepool of origin. Ma-
terials from the Mesoamerican genepool have thicker
leaves, which is associated with greater leaf assimila-
tion rates, relative growth rate and seed yield (Sexton
et al., 1997; White and Montes-R, 2005). The traits
THK and LOD show promise for screening genotypes
for leaf thickness, but large interactions of lines with
trials and sample dates can occur (White and Montes-
R, 2005). Andean lines are needed that consistently
show high values of thickness parameters across sam-
ples, seasons and locations, and thus might serve as
parents to develop Andean germplasm with thicker
leaves.

In Fig. 1, the trend of Andean lines having thinner
leaves is apparent for THK, LOD, LSM and PRa for
both years at Palmira but less so at Popayan. PRd also
varied with genepool. Andean lines that had higher val-
ues for the thickness traits included A 486, CAL 71and
Jatu Rong, while BAT 1393 had extremely thin leaves.
This ranking could also be determined by examining
means over standardized values of all traits, but the
large interactions for line with trial and sample date
imply that overall means may be misleading. In the
array, interactions are indicated by irregular patterns
of low versus high values. One example is for THK
i had
v le 3
( P).
ailed labeling were composed using ESRI ArcMap
Environmental Systems Research Institute Inc., R
ands, CA).
n Palmira 1992, where several Andean materials
alues similar to the Mesoamerican lines in samp
48 DAP) but not sample 1 (20 DAP) and 2 (32 DA
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Another is the large number of high values of PRa for
Andean lines in Popayan as compared to the two trials
at Palmira. Thus, revised criteria for promising lines
might exclude PRa and any data from 48 DAP. Using
these criteria, CAL 71, CAL 70 and Jatu Rong have the
thickest leaves based on the standardized values. The
information on growth habit and theFin gene shows
that these lines include indeterminate and determinate
types, suggesting that leaf thickness is not confounded
with growth habit.

The array for leaf thickness traits (Fig. 1) thus serves
as a valuable platform for interactive data exploration
and hypothesis generation. For simplicity, we only cal-
culated means using different criteria. In more exten-
sive analyses, statistical tests could assess whether par-
titioning data into subsets of lines, locations or samples
reduced the interactions and clarified underlying pat-
terns.

3.2. Elite spring wheat yield trial

Two GenPhEn arrays from the 11th ESWYT are pre-
sented inFig. 2. In both plots, thex-axis corresponds
to the mean yield (ranked from lowest to highest) of
the 30 lines averaged over the relevant number of test
sites, with the four horizontally arrayed data blocks
corresponding to the four measured traits. Similarly,
they-axis corresponds to the mean yield (ranked from
lowest to highest) of the given test site, averaged over
the 30 lines. InFig. 2A, the standardized values are
b us-
i rend
o (red
c ects
t ns
f r
e )
s gst
t hat
l s
h ites,
h
t ean
y arm,
T -
p
l ot
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cal cultivar that provides a benchmark to determining
whether new lines have suitable yields or other traits at
the test site in question.

For days to heading, test weight and kernel weight
(Fig. 2A), the lack of a similar pattern of color banding
from low- to high-grain yield suggests no simple rela-
tionship between these traits and grain yield. Nonethe-
less, for days to heading, if the two sites with the largest
number of days to heading (sites 11 and 16) are ignored,
the upper half of the days to heading data block has
fewer red points, suggesting that sites allowing longer
vegetative growth had higher yields.

For all traits inFig. 2A, little variation in color within
a row indicates little difference in the performance of
the lines at the corresponding site. Conversely, marked
differences in color within a row indicate that lines
varied in performance. Thus, for genotypic variation
in test weight, sites 6 (OCEPAR-Palotina) and 14 (La-
bor Ovalle) might be of special interest, whereas for
kernel weight, sites 4 (Vollebekk), 13 (Or. Melh. de
Sementes) and 34 (Durgapura) produced large ranges
of variation. Such patterns can also be discerned in ta-
bles of data and accompanying statistical tests, but for
large numbers of variables and treatments, a GenPhEn
array greatly facilitates identifying interesting patterns
as well as potential problem data.

Standardizing the phenotypic data based on mini-
mum and maximum values at each test site emphasizes
variation of lines within sites (Fig. 2B). Line 3 (Henne),
while having a low-mean yield over test sites, was the
h ast,
w ond
h y at
s al-
t igh
y line
3 was
c ghts
b line
3 gh-
k

ndi-
c ong
r
l id-
u s a
h co)
a

ased on the minimum–maximum range of values
ng line means averaged over all locations. The t
f the lowest grain yields appearing at the bottom
olor) and the highest yields at the top (blue) refl
he sorting ofy-values using site mean yield. Deviatio
rom this trend imply a genotypex-site interaction. Fo
xample, site 21 on they-axis (NPBRC-Njoro, Kenya
tands out for having two high-yielding lines amon
he otherwise medium to low-yielding lines. Note t
ine 1, whose position along thex-axis identifies it a
aving the lowest mean yield averaged over all s
ad a reported yield of more than 10,000 kg ha−1 at

est site 21. In contrast, line 30 had the highest m
ield averaged over sites, but at site 28 (Arusha F
.A.R.O., Tanzania), it yielded 1800 kg ha−1 as com
ared to yields of over 4000 kg ha−1 obtained for six

ines. Line 30 was the “local check,” which was n
he same genotype at all test sites but usually is
ighest yielding line at sites 48 and 53. In contr
hile line 29 (a selection of Veery) was the sec
ighest yielding over test sites, it performed poorl
ites 17 (ICGR, Beijing) and 24 (Centro Exp. Chim
enango). Line 25 (Munia) stood out for relatively h
ields at lower yielding sites. For days to heading,
was consistently the earliest and line 11 (Star)

onsistently the latest. Line 3 also had low-test wei
ut high-kernel weights. Often, the local check (
0) combined moderately high-test weight with hi
ernel weight.

The elevation and latitude of the test sites, as i
ated by the columns of points, did not show a str
elation with the four traits (Fig. 2A and B), but the
ocal information is of use for characterizing indiv
al sites. Thus, site 4 (Vollebekk) is identifiable a
igh-latitude, low-elevation site and site 5 (Obonu
s a low-latitude, high-elevation site.
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Fig. 2. GenPhEn arrays of response classes based on standardized (0–1) grain yield, days to heading, test weight and kernel weight from the
11th ESWYT (units and minimum–maximum ranges are given inTable 1). Each test site by line phenotypic value is by line mean yield averaged
over all sites on thex-axis and by site mean yield averaged over lines on they-axis. Values for each trait are displayed in the rectangularly
blocked areas as labeled. Appended below thex-axis is a four-row factorial array denoting homozygous dominant or recessive allelic nature of
the given lines for theLr26, Lr13, Rht2 andRht1 loci (blank where data were unavailable). The two columns of points appended to they-axis
represent standardized values for the elevation and latitude of each test site. If a trait was not measured at a given test site, the data row is blank.
(A) Standardized values based on minimum–maximum ranges of phenotypic values averaged over all sites. (B) Standardized values based on
minimum–maximum ranges of phenotypic values within each test site.
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The arrays of ESWYT data (Fig. 2A and B) showed
that the approach easily scales to larger amounts of data,
including when substantial blocks of data are missing.
The arrays again served to identify extreme values (data
exploration) and to suggest patterns (hypothesis gener-
ation) that could be examined further with regression
analyses or other methods.

3.3. Simulations of effects of temperature regime
on common bean

In modeling response of common bean to increased
air temperature, 11 variables were plotted as parallel
rectangles of points, with the 96-genotype combina-
tions indicated by the rectangle below the main data
(Fig. 3). Within each rectangle for a variable, the five
temperature regimes correspond to the five rows of
points. Simulated grain yield, canopy dry weight and
grain weight predominantly declined with increasing
temperature (Fig. 3A).

For simulations using historic weather conditions
(the lowermost row in each trait rectangle ofFig. 3A
and B), the differential effects of the seven genes are
most apparent for grain weight and days to anthesis.
Clustering improves the visualization with respect to
genes affecting those traits (Fig. 3B). Note that early-
flowering genotypes are predominantlyFd Fd, whereas
the groups of small-seeded genotypes aressz1 ssz1. The
highest yielding genotypes are mainlyPpd Ppd.

With warming to +4◦C, yields decrease more than
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3.4. Comparisons among the three examples

For three different types of data, the GenPhEn ar-
rays provided a comprehensible means for summariz-
ing and presenting large amounts of data (400 points
in Fig. 1 and approximately 5300 points in each plot
of Figs. 2 and 3) in a compact yet meaningful manner.
Varying how data were standardized (Fig. 2A versus B)
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examined from different perspectives. Numerous other
options exist for enhancing the information in the ar-
rays. Using higher resolution graphics, one can display
data points with different symbols to indicate levels
of significance or additional traits of interest, a tech-
nique termed “iconic display” byKeim (2002). Various
transformations or alternate strategies for normaliza-
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Fig. 3. GenPhEn arrays of response classes based on standardized (0–1) for grain yield, canopy dry weight at maturity, days to anthesis, duration of
grainfilling, grain weight, harvest index, season precipitation, season evapotranspiration, water use efficiency, season nitrogen uptake and nitrogen
use efficiency as simulated with CSM-GeneGro. Values are given for 96 distinct phenotypes possible from 128 homozygous combinations of
seven genes (27) in common bean (units and minimum–maximum ranges are given inTable 4), and field conditions are for rainfed production at
the Kellogg Biological Station, Michigan. Each row within a trait grouping represents one of five temperature regimes, ranging from the average
historic value (1930–2002) to a +4◦C increase. Appended below thex-axis is a seven-row factorial array denoting homozygous dominant or
recessive allelic nature of the 96-genotypes for thePpd, Hr, Fin, Fd, Ssz1, Ssz2 andSsz3 loci, with reach row corresponding to a different locus
and values of 0 or 1, to recessive or dominant alleles. (A) Genotypes ordered by gene combinations. (B) Genotypes classified into six clusters
as indicated along the top of the array.
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to order the data along both thex- andy-axes, allow-
ing the GenPhEn arrays to be used in conjunction with
biplots (e.g.,Yan et al., 2001).

4. Conclusion

GenPhEn arrays seem especially useful for ex-
ploratory data analysis and hypothesis generation, and
their use is recommended as a complement to quan-
titative statistical analyses. We emphasized examining
phenotypes, treating genotypes and environments as
secondary data, but the approach of plotting arrays as
pseudo-maps is directly applicable to research where
the focus is on characterizing gene expression or envi-
ronmental variation. For gene expression, the approach
converges with displays of data from microarrays and
other tools of bioinformatics (e.g.,Eisen et al., 1998;
Getz et al., 2000; Sharan et al., 2003).

The GenPhEn arrays were produced with the
GPLOT procedure of SAS/GRAPH and with ArcMap,
but other software packages have similar capabilities.
GPLOT offered the convenience of producing output
within the same programming environment as the ini-
tial data analysis. ArcMap offered greater power for
composing figures and for interactive querying, but it
required that the raw input include pre-calculatedx- and
y-coordinates. For simplicity, the examples presented
did not take full advantage of high-resolution graphics
nor of interactive querying. Numerous modifications
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